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 Abstract  - In recent years, a number of indirect data collection 
processes causes increase in  the data uncertainty in many 
applications. Because of such uncertain data ,databases 
becomes much more complex.. In this paper, we provide some 
information about uncertain data mining and management 
applications. We will introduce the various models utilized for  
uncertain  data  representation.  In  the  field  of  uncertain  data  
management,  we  will  examine different traditional  database 
management methods like join processing, query processing, 
selectivity estimation, OLAP queries, and indexing. And In we 
will also see traditional mining problems such as frequent 
pattern mining, outlier detection, classification, and clustering. 
We discuss different methods to process and mine uncertain 
data in a variety of forms. 
. 
Keywords— Mining methods and algorithms, database 
applications, database management, information technology 
and systems. 

I. INTRODUCTION 

Now a days , many advanced technologies have been 
developed to store and record large quantities of data 
continuously. In many cases, either the data contain errors 
or may only be partially complete. For an example, sensor 
networks typically create large amounts of uncertain data 
sets. In other cases, the data points may correspond to 
objects which are only vaguely specified, and are therefore 
considered uncertain in their representation. Also in case of, 
surveys and imputation techniques create data which is 
uncertain in nature. Therefore as  uncertain data increases 
in many fields causes need for uncertain data management 
algorithms and applications. Uncertain data management 
includes, data records that are typically represented by 
probability distributions i.e. by range of value rather than 
deterministic values or point value. Some examples in 
which uncertain data management techniques are related 
are as follows: 
The uncertainty  in data may be because  of the limitations 
of the underlying equipment. For example, the output 
record by sensor networks is uncertain because of either the  
noise in sensor inputs or errors in wireless transmission. 
In different cases such as demographic data sets in this, 
datasets are partially aggregated because of privacy 
concerns. Thus, each aggregated record can be represented 
by a probability distribution. Also in other privacy 
preserving data mining applications, the data is perturbed in 
to preserve the sensitivity of attribute values. In some 
cases, probability density functions of the records may be 
available. Some recent techniques  construct privacy 
models, such that the output of the transformation approach 
is friendly to the use of uncertain data mining and 
management techniques.  

In some cases, data attributes are constructed using 
statistical methods such as forecasting or imputation. In 
such type of cases, the underlying uncertainty in the 
derived data can be estimated accurately from the 
underlying methodology. For an example of missing data .  
Therefore  management of such uncertain data causes a 
number of unique challenges on several areas. The two 
main  issues are first modeling the uncertain data, and  
leveraging it to work with a variety of applications. 
different issues and working models for uncertain data have 
been discussed in  and . The second issue is that of adapting 
data management and mining applications to work with 
such type of uncertain data. The main areas of research in 
the field are as follows: 
 Modeling of uncertain data- A key issue here is the 

process of modeling the uncertain data in such a way 
that the underlying complexities can be captured while 
keeping the data useful for database management 
applications. 

  Uncertain data management- In this case, one 
wishes is try to adapt different traditional database 
management techniques for uncertain data such as join 
processing, query processing, indexing, or database 
integration etc. 

 Uncertain data mining - The results of data mining 
applications are affected if the underlying data is  
uncertain. Therefore, it is critical to design data mining 
techniques that can handle such uncertainty in data.    

 
II. UNCERTAIN DATA REPRESENTATION AND 

MODELING 
The problem of modelling uncertain data has been studied 
extensively in the literature. There  are mainly two cases 
first a database that provides incomplete information 
consists of a set of possible instances of the database and a 
database that consist of probabilistic data therefore it is 
important to distinguish between incomplete databases and 
probabilistic data, because the latter is a more specific 
definition which creates database models with crisp 
probabilistic quantification. 
 
A. Probabilistic Database Definitions 
A definition of probabilistic database is as follows: 
Definition 1- A probabilistic information database is a 
finite probability space  in which  outcomes are all possible 
database instances consistent with a given schema. 
 This can be represented as the pair  (X, p), where X is a 
finite set of possible database instances consistent with a 
given schema,and p(I) is the probability associated with 
any instance I Є X. We note that since p(.) represents the 
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probability vector over all instances in X, we have ∑IЄX 
p(I) = 1. The above representation is a formalism of the 
“possible world’s model”. Probabilistic?-tables are a simple 
way of representing probabilistic data. In this case, one 
models the probability that a  particular  tuple  is  present  
in  the  database.  Thus,  the probability of a particular 
instantiation of the database can be defined   as   the   
product   of   the   probabilities   of   the corresponding set 
of tuples to be present in the database with the product of 
the probabilities of the complementary set of tuples to be 
absent from the database. 
 
Simplifying Assumptions in Practical Applications 
The  above  definitions  are  fairly  general  formalisms  for 
probabilistic data. In many practical applications, one  may 
often work with simplifying assumptions on the underlying 
database.  One  such  simplifying  assumption  is  that  the 
presence and absence of different tuples is probabilistically 
independent.   
In such formalism, all possible probability distributions on 
possible worlds are not captured with the use of 
independent tuples. This is referred to as incompleteness. 
Furthermore, one needs to be careful in the application of 
such formalism, since it may result in inconsistency. Our 
discussions above can be summarized in terms of the major 
classes of uncertainty that most applications work with. 
Broadly, most applications work on two kinds of 
uncertainty:  
1) Existential uncertainty  
2) Attribute level uncertainty  
 
A. Recent Projects  
A number of recent projects have designed uncertain 
databases around specific application requirements. For 
example, the Conquer project introduced query rewriting 
algorithms to extract clean and consistent answers from 
unclean data under possible world’s semantics. Methods 
are also proposed to derive probabilities of uncertain items. 
One of the key aspects of the Conquer project is that it 
permits real time and dynamic data cleaning in such a way 
that clean and consistent answers may be obtained for 
queries. Another example of such a database is the Orion 
project which presents query processing and indexing 
techniques in order to manage uncertainty over continuous 
intervals. Such application-specific databases are designed 
for their corresponding domain, and are not very effective 
in extracting information from “possible worlds” semantics. 
A recent and interesting line of models for uncertain data is 
derived from the Trio project at Stanford University. This 
work introduces the concept of Uncertainty- Lineage 
Database (ULDB), which is a database with both 
uncertainty and lineage. We note that the introduction of 
lineage as a first-class concept within the database is a 
novel concept which is useful in a variety of applications 
such as query processing. The basic idea in lineage is that 
the model keeps track of the sources from which the data 
was acquired and also keeps track of its influence in the 
database 
 
 

B. Extensions to Semi structured and XML Data  
Recently, uncertain data models have also been extended to 
semi structured and XML data. XML data poses numerous 
unique challenges. Since XML is structured, the 
probabilities need to be assigned to the structural 
components such as nodes and links. Furthermore, element 
probabilities could occur at multiple levels and nested 
probabilities within a sub tree must be considered. 
Furthermore, incomplete data should be handled gracefully 
since one may not insist on having complete probability 
distributions. Another unique issue in the case of XML data 
is that the probabilities in an ancestor descendent chain are 
related probabilistically. In the most general case, this can 
lead to issues of computational intractability. The approach 
is to model some classes of dependence (e.g., mutual 
exclusion) which are useful and efficient to model. The 
work also designs techniques for a restricted class of 
queries on the data. Another interesting approach to 
probabilistic XML data construction. In this technique, 
probabilistic XML trees are constructed in order to model 
the structural behavior of the data. 
 

III. UNCERTAIN DATA MANAGEMENT APPLICATIONS 
In this section, we will discuss the design of a number of 
data management applications with uncertain data. These 
include applications such as query processing, Online 
Analytical Processing, selectivity estimation, indexing, and 
join processing. We will provide an overview of the 
application models and algorithms in this section.  
 
A. Query Processing of Uncertain Data  
In traditional database management, queries are typically 
represented as SQL expressions which are then executed on 
the database according to a query plan. As we will see, the 
incorporation of probabilistic information has considerable 
effects on the correctness and computability of the query 
plan. 
 
1) Intentional and Extensional Semantics:- A given query 
over an uncertain database may require computation or 
aggregation over a large number of possibilities. In some 
cases, the query may be nested, which greatly increases the 
complexity of the computation. There are two broad 
semantic approaches used:  
 a) Intentional semantics  
 b) Extensional semantics  
1) Queries with Correlations  

2) Top-k Query  

3) The OLAP Model  
 a) Consistency  
 b) Faithfulness  
4) Correlation-preservation  

5) Query allocation  

6) Aggregating uncertain measures  
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B. Indexing Uncertain Data  
The problem of indexing uncertain data arises frequently in 
the context of several application domains such as moving 
trajectories or sensor data. In such cases, the data is updated 
only periodically in the index, and therefore the current 
attribute values cannot be known exactly; they can only be 
estimated. There are many different kinds of queries which 
can be resolved with the use of index structures:  
1) Range queries  

2) Nearest neighbor queries  

3) Aggregate queries  

4) Moving Object Environments  
 
Definition 1. An uncertainty region Ui(t) of an object Oi at  
Time t is a closed region such that Oi can be found only in 
this region. 
Definition 2. The uncertainty density function fi(x, y, t) is 
the probability density function of the object Oi at location 
(x, y) and time t. This uncertainty function has a value of 0 
outside Ui(t).  
The technique for processing a probabilistic nearest 
neighbor query involves evaluating the probability of each 
object being closest to the query point. One of the key 
challenges of the nearest neighbor query is that unlike the 
probabilistic range query, one cannot determine the 
probability for an object independent of the other points. 
The solution basically comprises the steps of projection, 
pruning, bounding, and evaluation. These steps are 
summarized as follows: 
a) Projection  
b) Pruning phase  
c) Bounding phase  
d) Evaluation phase  
e) Probabilistic Threshold Queries 
Definition 3. Given a closed interval [c, d], where c, d Є R 
and c ≤ d, a probabilistic threshold query returns a set of 
tuples Ti, such that the probability pi that Ti.a is inside [c, d], 
is greater than or equal to p, where 0 ≤ p ≤ 1. We note that 
Ti.a represents the probability attribute of tuple Ti. Thus, a 
probabilistic threshold query can be treated as a range 
query, which operates on probabilistic uncertainty. 
Definition 4. An x-bound of an MBR/uncertainty interval 
Mj is a pair of lines, namely left-x-bound (denoted by 
Mj.lb(x)) and right-x-bound (denoted by Mj.rb(x)). Every 
uncertain object contained in this MBR is guaranteed to 
have a probability of at most x (where 0 ≤ x ≤ 1) of being 
left of the left-x-bound and also guaranteed to have a 
probability of at most x of being right of the right-x-bound.  
We note that this kind of bound is a generalization of the 
concept of the MBR. This is because the MBR of an 
internal node can be viewed as a 0-bound. This is because it 
guarantees that all intervals in the node are contained in it 
with probability 1.The purpose of storing the information 
of the x-bound of a node is to avoid investigating the 
contents of a node. This saves I/O costs during index 
exploration. The presence of the x-bound allows us to 
decide whether an internal node contains any qualifying 
MBRs without further probing into the sub trees of this 

node. Let p be the threshold probability for the query. The 
two necessary pruning conditions (both conditions must 
hold) for node Mj to be pruned with the use of the x-bound 
are as follows:  

 Mj can be pruned if [a, b] does not intersect leftx- 
bound or right-x-bound of Mj, i.e., either b < 
Mj.lb(x) or a > Mj.rb(x).  

  P ≥ x.  
In the event that the above conditions do not hold, the 
internal contents of node Mj are examined and further 
exploration of the tree is resumed. It has been that the 
probability threshold query (PTQ) index is quite efficient 
when the threshold p is fixed a priori across all queries. 
When the threshold p varies, then the index continues to be 
experimentally efficient on the average, though the actual 
behavior mat vary quite a bit across different queries. 
Definition 1. Given a discrete categorical domain D = {d1. 
. . dN}, an uncertain discrete attribute (UDA) u is a 
probability distribution over D. It can be represented by the 
probability vector u.P = {p1, . . . , pN} such that Pr(u = di) 
= u.pi. The probability that two uncertain attribute values 
are equal can be computed by calculating the corresponding 
equality probability over all possible uncertain values. 
Therefore, we have the following.  
Observation 1. Given two UDAs u and v, the probability 
that they are equal is given by Pr(u = v) = Σ u.pi × v.pi. 
Analogous to the notion of equality of value is 
distributional similarity. The distance function may be 
defined in terms of the L1 function, the L2 function, or the 
Kullback-Leibler distance function. The kinds of queries 
resolved by the technique are as follows: 
1) Probabilistic equality query (PEQ):- Given a UDA q, 
and a relation R with a UDA a, the query returns all tuples t 
from R along with probability values, such that the 
probability value Pr(q = t.a) ≥ 0.  
2) Probabilistic equality threshold query (PETQ):- Given a 
UDA q, a relation R with UDA a and a threshold r, r ≥ 0. 
The answer to the query is all tuples t from R such that Pr(q 
= t.a).  
3) Distributional similarity threshold query (DSTQ):- 
Given a UDA q, a relation R with UDA a, a threshold rd, 
and a divergence function F, DSTQ returns all tuples t from 
R such that F(q, t.a) ≤ rd.  
4) Probabilistic equality threshold join (PETJ):- Given two 
uncertain relations R, S, both with UDAs a, b, respectively; 
relation R ×Ra = Sb.r S consists of all pairs of tuples r, s 
from R, S, respectively, such that Pr(r.a = s.b) ≥ r. 
5) Probabilistic Distribution R-Tree: - Next, we will 
discuss the probabilistic distribution R-Tree which is an 
alternative for indexing UDAs. The broad approach is to 
index the vector of probability values of the possible 
attribute values. Thus, if there is N possible probability 
values then, data points are created in RN. One distinction 
from traditional R-Trees is that the underlying queries have 
very different semantics. The uncertain queries are hyper 
plane queries on the N-dimensional cube. The MBRs of 
this R-Tree are thus defined in terms of the corresponding 
Probability values. This ensures that the essential pruning 
properties of R-Trees are maintained. For example, for the 
case of probabilistic threshold query, one can compute the 
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maximum probability of equality for any node in the sub 
tree by taking the maximum dot product of the target object 
probabilities with the corresponding probability vector 
from the MBR. When this value is less than the user-
specified threshold, the corresponding sub tree can be 
pruned. The results suggest that neither of the two 
techniques emerges as a clear winner, and either of the 
techniques may perform.  
 
D. Join Processing on Uncertain Data  
In the case of join processing, techniques have been 
developed for probabilistic join queries and similarity joins. 
In the case of probabilistic join queries, it is assumed that 
each item is associated with a range of possible values and 
a probability density function, which quantifies the 
behavior of the data over that range. The range of values 
associated with the uncertain variable is denoted by a.U = 
[a.l, a.r]. Thus, a.l is the lower bound of the range and a.r is 
the upper bound of the range. By incorporating the notion 
of uncertainty into data values, imprecise answers are 
generated. Each join-pair is associated with a probability to 
indicate the likelihood that the two tuples are matched. A 
second kind of join is the similarity join. Similarity is 
measured by the distance between the two feature vectors. 
The join is performed based on this distance. 
1) Probabilistic Join Queries:- Since each tuple-pair is 
probabilistic in nature, the join may contain a number of 
false positives which are typically those pairs which are 
associated with probability values. Each tuple-pair is 
associated with a probability that indicates the likelihood of 
the join. In order to compute these probability values, the 
notions of equality and inequality need to be extended to 
support uncertain data. We note that those join-pairs which 
have low probability can be discarded. This variant of 
probabilistic join queries is referred to as Probabilistic 
Threshold Join Queries. We note that the use of thresholds 
reduces the number of false positives, but it may also result 
in the introduction of false negatives. Thus, there is a 
tradeoff between the number of false positives and false 
negatives depending upon the threshold which is chosen. 
The reformulation of the join queries with thresholds is also 
helpful in improving the performance requirements of the 
method. A number of pruning techniques are developed in 
order to improve the effectiveness of join processing. These 
Pruning techniques are as follows: 
a) Item-level pruning: - In this case, two uncertain values 
are pruned without evaluating the probability.  
b) Page-level pruning: - In this case, two pages are pruned 
without probing into the data stored in each page.  
c) Index-level pruning: - In this case, the data which is 
stored in a sub tree is pruned.  
We note that a key operator in the case of joins is that of 
equality, since a join is performed only when the 
corresponding attribute values are equal. For the case of 
continuous data with infinitesimal resolution, this is never 
the case since any of the pair of attributes can take on an 
infinite possible number of values. Therefore, a pair of 
attributes is defined to be equal to one another within 
acceptable resolution c, if one attribute value is within c of 
another. Let a and b be the two join attributes. Let a.f(x) 

and b.f(x) represent the corresponding probability density 
and cumulative density functions, respectively. 
Correspondingly, the probability can be calculated as 
follows: 
P(a = cb) = ∫a.f(x) . (b.F(x + c) – b.F(x - c))dx   (1). 
 
For the case of the > and < operators, it is not necessary to 
use the resolution, and it is possible compute the 
corresponding probability of inequality P(a > b) and P(a < 
b) in a straightforward way. In order to evaluate the join, 
common block-nested-loop and indexed-loop can be used. 
The advantage of these algorithms is that they have been 
implemented in most database systems, and therefore only 
a small amount of modification is required in order to 
support the joins. The main difference is to use the 
uncertainty information in order to compute the probability 
of equality. For the use of probability density functions 
such as the uniform or the Gaussian function, closed form 
formulas may be obtained in order to determine the 
probability of equality. Subsequently, those pairs with 
probability less than the required threshold can be pruned. 
We note that the computations of the probability of a join 
can sometimes be expensive when the probabilistic 
computations cannot be expressed in closed form. 
Therefore, it is often useful to be able to develop quick 
pruning conditions in order to exclude certain tuple pairs 
from the join. Suppose a and b are uncertain valued 
variables and a.U ∩ b.U ≠ Ø. Let la, b, c, be max{a.l- c, b.l- 
c}, and let ua, b, c be min{a.r + c, b.r + c}. For equality and 
inequality, the following pruning conditions hold true:  
 P(a =c b) is at most min{a.F(ua,b,c) - a.F(la,b,c), b. 

F(ua,b,c) - b. F(la,b,c)}.  
 Correspondingly, it is easy to see that P(a ≠c b) is at 

least equal to the complement of the above expression.  
We note that the above expressions can be computed easily 
as long as the cumulative density function of the expression 
is available either in closed or numerical form. We note 
that a tuple pair can be eliminated when the probability of 
equality is less than the user-defined threshold. We further 
note that in some cases, it may not be necessary to report 
the explicit probabilities of the tuple joins, as long as all 
tuples whose join 
probability is above the user-defined threshold are reported. 
For such cases, it is only necessary to determine whether 
the required probability lies above a given threshold. For 
such cases, we can use another pruning condition. For a 
pair of uncertain-valued variables a and b, it is possible to 
compute a bound on the corresponding probability that one 
is greater than the other. Specifically, the bounds are as 
follows:  

 If a.l ≤ b.r < a.r, P(a > b) ≥ 1 - a. F(b.r).  
  If a.l ≤ b.l ≤ a.r, P(a > b) ≤ 1 - a. F(b.l).  

The above two inequalities can be used for those join tuples 
which satisfy the preconditions described above? 
Depending upon the direction of the inequality, one can 
immediately include or exclude the corresponding join 
tuples from the inequality. We note that in many of these 
join processing algorithms, the unit of retrieval is a page 
from an index structure. In such cases, one can prune the 
entire node of the index tree by constructing bounds on the 
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join behavior of the nodes in the tree. By using this 
approach, either page-level pruning can be achieved, or 
index-level pruning can be achieved by using an inner level 
node in the index tree. A concept called the x-bound is used 
to augment the nodes of the underlying index structure. 
3) Similarity Join: - The most popular similarity join is the 
distance-range join. In the distance-range join, we perform 
the join between two records, if the distance between the 
two does not exceed a user-defined parameter є. The 
natural generalization for the case of uncertain data is to 
compute the expected distance between two relations, and 
perform the join if this expected distance is less than the 
parameter є. This may result in considerable inaccuracies in 
the join computation process. This is because the expected 
distances are often skewed by the behavior of the tail end 
behavior of the probability functions of different attributes. 
Thus, the expected distances may not reflect the true 
likelihood that a given pair of records may join on a 
particular attribute. The result is that different joins which 
have similar probability of lying within the range of є may 
be treated inconsistently.  
 
E. Data Integration with Uncertainty  
An important application in the context of uncertain data is 
that of data integration. In order to do so, the work 
introduces the concept of probabilistic schema mappings. 
These are defined as a set of possible (ordinary) mappings 
between a source schema and a target schema, where each 
possible mapping has an associated probability. It is 
suggested that there are two possible interpretations to 
probabilistic schema mappings. The first (table-specific 
mapping) assumes that there is a single correct mapping, 
but we do not know which it is. This single correct 
mapping applies to all tuples. In the second interpretation 
(tuple-specific mapping), the mapping depends upon the 
tuple to which it is applied. A number of algorithms are 
described for answering queries in the presence of 
probabilistic schema mappings. 
 
F. Probabilistic Skylines on Uncertain Data  
A problem which is quite relevant to the case of uncertain 
data is that of probabilistic skyline computation. The 
problem of skyline computation is used in multi criteria 
decision-making applications. For example, consider the 
case when statistics of different NBA players are 
computed, such as the number of assists, rebounds, baskets, 
etc. It is unlikely that a single player will achieve the best 
performance in all respects.  
Definition 1. For two d-dimensional points u = (u1, . . . , 
ud) and v = (v1, . . . , vd), u is said to dominate v, if for 
each i Є {1, . . . , d}, we have ui ≤ vi, and for some i0 Є {1, 
. . . , d}, We have ui0 < vi0.  
Definition 2. Given a set of points S, a point u is a skyline 
point if there exists no other point v Є S such that v 
dominates u. The skyline on S is the set of all skyline 
points.  
Definition 3. Given a probability threshold p (0 ≤ p ≤ 1), 
the P-skyline is the set of uncertain objects, such that each 
of them has probability of at least p to be in the skyline.   
 

IV. MINING APPLICATIONS FOR UNCERTAIN DATA 
Recently, a number of mining applications have been 
devised for the case of uncertain data. Such applications 
include clustering and classification. We note that the 
presence of uncertainty can affect the results of data mining 
applications significantly. For example, in the case of a 
classification application, an attribute which has lower 
uncertainty is more useful than an attribute which has a 
higher level of uncertainty. Similarly, in a clustering 
application, the attributes which have a higher level of 
uncertainty need to be treated differently from those which 
have a lower level of uncertainty. 
 
A. Clustering Uncertain Data  
The presence of uncertainty changes the nature of the 
underlying clusters, since it affects the distance function 
computations between different data points. A technique 
has been proposed in order to find density-based clusters 
from uncertain data. The key idea in this approach is to 
compute uncertain distances effectively between objects 
which are probabilistically specified. The fuzzy distance is 
defined in terms of the distance distribution function. This 
distance distribution function encodes the probability that 
the distances between two uncertain objects lie within a 
certain user-defined range. Let d(X,Y) be the random 
variable representing the distance between X and Y. The 
distance distribution function is formally defined as follows: 
 
Definition 1. Let X and Y are two uncertain records, and 
let P(X,Y) represent the distance density function between 
these Objects. Then, the probability that the distance lies 
within the  
Range (a, b) is given by the following relationship:  
P(a ≤ d(X,Y) ≤ b) = ∫ p(X,Y)(z)dz     (2).  
Based on this technique and the distance density function, 
the method defines a reach ability probability between two 
data points. This defines the probability that one data point 
is directly reachable from another with the use of a path, 
such that each point on it has density greater than a 
particular  
Threshold 

 
Fig 1. Density-based profile with lower density threshold. 

 
B. Classification of Uncertain Data  
A closely related problem is that of classification of 
uncertain data in which the aim is to classify a test instance 
into one particular label from a set of class labels. A 
method was proposed for support vector machine 
classification of uncertain data. This technique is based on 
a discriminative modeling approach which relies on a total 
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least squares method. This is because the total least squares 
method assumes a model in which we have additive noise. 
However, instead of using Gaussian noise, the technique 
uses a simple bounded uncertainty model. Such a model 
has a natural and intuitive geometric interpretation. Note 
that the support vector machine technique functions by 
constructing boundaries between groups of data records. 
Then, the margin created by the support vector machine can 
be modified by using the uncertainty of the points which lie 
on the boundary. For example, if points on one side of the 
boundary have greater uncertainty, this influences the way 
in which the margins are adjusted by the classifier. 

 
Fig. 2. Density-based profile with higher density threshold. 

 
C. Frequent Pattern Mining  
The problem of frequent pattern mining has also been 
explored in the context of uncertain data. In this model, it is 
assumed that each item has an existential uncertainty in 
belonging to a transaction. This means that the probability 
of an item belonging to a particular transaction is modeled 
in this approach. In this case, an item set is defined to be 
frequent, if its expected support is at least equal to a user 
specified threshold. In order to solve this version of the 
frequent pattern mining problem, the U-Apriori algorithm 
is proposed which essentially mimics the Apriori algorithm, 
except that it performs the counting by computing the 
Expected support of the different item sets. The expected 
support of a set of items in a transaction is obtained by 
simply multiplying the probabilities of the different items 
in the transaction. The approach can be made further 
scalable by using the concept of data trimming. In the data 
trimming approach, those items with very low existential 
probability are pruned from the data. The algorithm is then 
applied to the trimmed data. It has been shown that this 
approach can accurately mine the frequent patterns while 
maintaining efficiency. 
 
D. Outlier Detection with Uncertain Data  
The problem of outlier detection has also been extended to 
the case of uncertain data. In the case of the outlier 
detection problem, differing levels of uncertainty across 
different dimensions may affect the determination of the 
outliers in the underlying data. For example, consider the 

case in which the contours of uncertainty for two data 
points X and Y are illustrated in the form of elliptical 
shapes. The data point X seems to be further away from the 
overall data distribution as compared to the data point Y. 
However, the contours of uncertainty are such that the data 
point X has a greater probability of being drawn from the 
overall data distribution. 

 
Fig. 3. Effect of uncertainty on outlier detection. 

 

Correspondingly, it is possible to define the concept of an 
outlier in terms of the probability that a given data point is 
drawn from a dense region of the overall data distribution. 
In order to quantify the probability that a given uncertain 
data point is drawn from a dense region, we define the 
concept of n-probability. The n-probability of a data point 
Xi is defined as the probability that the uncertain data point 
lies in a region with (overall data) density at least n. Since 
the data point is uncertain, the n-probability may be 
computed by integrating the density of the data point along 
the contour of the intersection of the overall density 
function with threshold n. However, this can be 
computationally challenging from a numerical point of 
view. Therefore, the n-probability may be estimated with 
the use of sampling. The idea is to draw multiple samples 
from the data and compute the fraction of the samples over 
which the density threshold is specified. This can be used 
to define the concept of a (δ, n)-outlier.  
 

V. CONCLUSION 
The field of uncertain data management has seen a revival 
in recent years because of new ways of collecting data 
which have resulted in the need for uncertain 
representations. We presented the important data mining 
and management techniques in this field along with the key 
representational issues in uncertain data management. 
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